Effects of Acute Exercise on Mood and Well-Being in Patients with Major Depressive Disorder

JOHN B. BARTHOLOMEW1, DAVID MORRISON2, and JOSEPH T. CICCOLO1

1The University of Texas at Austin, Department of Kinesiology and Health Education, Exercise Psychology Laboratory, Austin, TX; and 2Future Search Trials, Inc., Austin, TX

ABSTRACT

BARTHOLOMEW, J. B., D. MORRISON, and J. T. CICCOLO. Effects of Acute Exercise on Mood and Well-Being in Patients with Major Depressive Disorder. Med. Sci. Sports Exerc., Vol. 37, No. 12, pp. 2032–2037, 2005. Purpose: This study was designed to determine if a single bout of moderate-intensity aerobic exercise would improve mood and well-being in 40 (15 male, 25 female) individuals who were receiving treatment for major depressive disorder (MDD). Methods: All participants were randomly assigned to exercise at 60–70% of age-predicted maximal heart rate for 30 min or to a 30-min period of quiet rest. Participants completed both the Profile of Mood States (POMS) and Subjective Exercise Experiences Scale (SEES) as indicators of mood 5 min before, and 5, 30, and 60 min following their experimental condition. Results: Both groups reported similar reductions in measures of psychological distress, depression, confusion, fatigue, tension, and anger. Only the exercise group, however, reported a significant increase in positive well-being and vigor scores. Conclusion: Although 30 min of either moderate-intensity treadmill exercise or quiet rest is sufficient to improve the mood and well-being of patients with MDD, exercise appears to have a greater effect on the positively valenced states measured. Key Words: AEROBIC EXERCISE, AFFECT, PROFILE OF MOOD STATES (POMS), SUBJECTIVE EXERCISE EXPERIENCE SCALE (SEES), VIGOR

There is a growing recognition and acceptance of chronic exercise as a useful treatment modality for depression (8,12,30). Cross-sectional studies have reported more depressive symptoms in physically inactive individuals (20,33). A 16-wk exercise intervention found exercise to be as effective as antidepressants in treating older patients with depression (8). Regular exercise has also been shown to protect against relapse to previous levels of depression (6). A dose–response relationship between exercise and depression is plausible (12); for example, a moderate exercise dose has a therapeutic effect for patients with major depressive disorder (MDD), but a low exercise dose does not (13). The number of acute exercise bouts needed to produce a therapeutic effect is unknown; however, exercise training interventions have effected a substantial improvement in symptoms in only a few weeks (8,13). In a recent review, Dunn et al. (12) suggest that a dose–response relationship may exist between exercise and depression, with a positive association between the amount of exercise and the reduction in depression. A moderate exercise dose, therefore, appears to have a greater therapeutic effect for patients with MDD compared with a low exercise dose (13). Although receiving little attention among clinicians, a single, an acute bout of exercise is sufficient to reduce transiently depressive symptoms and improve moods, according to numerous studies of nonclinical samples (30,35). Although less consistent following intense exercise (i.e., above lactate threshold (14)), mood has been shown to improve with moderate-intensity (50–70% V\textsubscript{O}\text{\textscript{2}}\text{max}) exercise (35), and at durations of at least 10–15 min (15). It may be that acute bouts of exercise will also serve as an intervention to aid daily mood regulation in patients with MDD. It is, however, more difficult to predict the influence of an acute bout of exercise in this population. The mood disorder that is associated with MDD, by definition, is less transitory than the mood disturbance scores found in healthy samples. It may be that the effect of MDD is simply too great to be overcome, even in the short term, with a single bout of exercise. Conversely, these effects appear to be moderated by preexercise scores (23). Thus, healthy participants with higher preexercise symptoms of depression report the greatest improvement in mood. Because few studies have tested the effects of acute exercise in conjunction with clinically diagnosed, mental health patients, however, it is not clear that these effects will generalize to a clinical sample.

It is important to note that any single bout of exercise would not be expected to provide a lasting reduction in the underlying clinical disorder of depression. The lasting application of any treatment, whether exercise, counseling, or medication, is more likely to have an enduring effect on MDD. Acute bouts of exercise, in contrast, would be ex-
EFFECTS OF ACUTE EXERCISE ON MAJOR DEPRESSIVE DISORDER

Methods

Participants. Participants were 15 men and 25 women, 18–55 yr of age, diagnosed with MDD according to the DSM-IV (4) criteria. Future Search Trials, Inc. (FST) referred all participants to this study, which was completed within 2 wk of their diagnosis. Thus, participation in the study coincided with the onset of their treatment. Whereas this would be expected to confound the assessment of exercise training on MDD, it did not confound the effects of a single bout of exercise in this between-subjects design, because no treatment occurred between the pre- and posttest assessments. FST operates both a clinical psychology practice providing treatment for depression and other psychological disorders, as well as a clinical trials research company. All participants were diagnosed with MDD by a board-certified adult psychiatrist employed by FST. The mean age of the participants was 38.1 yr; 68% were white, 17% were Latino, 11% were African American, and the final 4% designated themselves as other. Exclusion criteria for this study were as follows: 1) participants who reported exercising regularly, as defined by more than twice per week, during the 1 month before screening; 2) participants intolerant or resistant to exercise; 3) participants with a principal psychiatric diagnosis other than MDD, or those with a comorbid disorder (e.g., panic disorder); and 4) participants currently taking antidepressant medication. None of the potential participants were excluded using these criteria. This study was approved by the institutional review board of the University of Texas at Austin, and each participant signed an informed consent before beginning the study.

Procedure. A psychiatrist referred all patients to the study once MDD was diagnosed. No participant had been diagnosed with MDD for longer than 2 wk at the time of participation. Once referred to the study, participants were then interviewed by one of the authors to determine eligibility. All individuals referred met inclusion or exclusion criteria, and each was assigned to either an aerobic exercise session or a quiet-rest control. None were told to refrain from coffee, smoking, or other mood-altering substances (e.g., supplements, energy drinks, chocolate) before testing. Pseudorandom assignment for 40 individuals was established before recruitment that placed 20 participants in each condition. Each participant was then assigned to the condition assigned to the individual’s specific number (i.e., 1–40). Affective state was assessed 5 min before exercise or control, and three times after exercise or control: 5, 30, and 60 min after. Both the Profile of Mood States (POMS) and the Subjective Exercise Experiences Scale (SEES) were administered to ask the participants how they are feeling “right now, at this moment.” Walking speed was adjusted to maintain heart rate at target levels, with heart rate continuously monitored but not recorded by the experimenter. Rating of perceived exertion (RPE) was monitored and recorded every 5 min during exercise. All participants were paid $100 upon completion of the study.

Participants assigned to the aerobic exercise session engaged in one session of brisk walking on a treadmill for 30 min. All participants assigned to the aerobic exercise session wore a heart rate monitor (Vantage XL; Polar Inc.) and walked at an intensity equal to 60–70% of their age-predicted maximal heart rate. This exercise protocol (i.e., intensity, duration, and mode) was selected because it met the American College of Sports Medicine’s (ACSM) guidelines for accumulated, daily physical activity (3). No warm-up session was used; however, patients were instructed on how to walk on the treadmill before the exercise bout and were given instruction on walking, if needed, during exercise. The participants were also instructed on how to use the RPE scale, verbatim, as it is listed in ACSM guidelines (2). Participants assigned to the quiet rest control were given instructions to sit quietly for 30 min. These participants were provided with a comfortable, nonreclining chair, located in the same room as the treadmill. They were told not to sleep and were not allowed to read. Neither the exercising nor the quiet rest participant experienced any other interactions during this period. At the end of the treadmill walking or quiet rest, participants were directed to a desk where they sat and completed the questionnaire at 5, 30, and 60 min. The same testing room was used for both conditions, and one experimenter was in the room throughout the entire experiment.

Measures. Because mood and well-being were the primary dependent variables, no attempt was made to use clinical measures to assess the degree of the ongoing depression. Instead, participants completed both the SEES...
overly restrictive for the standard alpha correction (e.g., Bonferroni or Scheffe’). If all interactions were significant, this would result in experiment-wise alpha inflation being protected against by setting the alpha for all post hoc comparisons equal to 0.01. Given the predicted interactions, the groups are expected to report differences in the duration of these effects. As a result, change scores were used as the basis of the effect size estimates, (d), which will be presented as the mean difference in these change scores divided by their pooled standard deviation.

RESULTS

The mean RPE for exercise participants was 13.2 (SD 1.8). Results for the other psychological variables are presented in Table 1. No significant main effects were noted for group: all P values > 0.15. Significant main effects, however, were noted for time for all variables: P values < 0.01, excluding SEES fatigue scores, which were P > 0.15. With regard to the specific hypotheses, a significant group \times time interaction was noted for two of the nine variables used to indicate psychological state: psychological well-being assessed by the SEES, F (3, 114) = 5.32, P < 0.01; and vigor, as assessed by the POMS, F (3, 114) = 5.55, P < 0.01. Probing the interaction revealed that the exercise group reported significantly greater increases in positive well-being F (3, 17) = 6.61, P < 0.15, than did the quiet rest group, with significant differences occurring at 5 min, d = 1.13, and 30 min, d = 1.06, after exercise. The exercise group also reported significantly greater increases in vigor compared with the quiet rest group, F (3, 17) = 6.68, P < 0.01, with significant differences at 5 min, d = 1.02, and 30 min, d = 0.73 after exercise. Because the vigor subscale includes the item “active,” which may be misinterpreted to refer to physical activity rather than psychological vigor, the item was deleted for a second analysis. This deletion did not adversely affect the reliability of the resulting subscale, with a Cronbach alpha equal to 0.80. Results indicated no difference from the initial analysis. The group \times time interaction remained significant for the modified vigor subscale, F (3, 114) = 5.94, P < 0.01; with a pattern of results (d = 1.17 at 5 min; and 0.76 at 30 min) similar to the full subscale. One participant reported a high RPE of 18, suggesting that individual’s exercise was of high intensity. The analysis was rerun after deletion of factors related to this participant. The deleted factors had no effect on the pattern of results, with psychological well-being, F (3, 111) = 6.36, P < 0.01; and vigor, F < (3, 111) = 5.23, P < 0.01, remaining as the only significant group \times time interactions.

DISCUSSION

This experiment was designed to examine the effect of a single bout of exercise on mood and well-being in individuals who were diagnosed with MDD. Exercise had additional benefits over quiet rest for two of the nine subscales assessed: 1) psychological well-being (SEES), and 2) vigor (POMS). With the exception of the fatigue subscale (SEES), which remained unchanged, participants in both conditions reported similar improvements on the remaining subscales.
Throughout the 60 min of postintervention assessment, thus, both a period of rest in a quiet, comfortable environment and a period of brisk treadmill walking appear to be sufficient to improve the mood of patients with MDD. This result replicates data from healthy samples that demonstrate exercise to be no better than quiet rest in reducing state anxiety (7) and no better than other forms of mood enhancement in reducing depressive moods (30). It is well known that mood is improved for healthy samples following periods of rest or relaxation (7,16), and exercise (7,35). It appears that this benefit applies to patients with MDD.

It is interesting to note that exercise was associated with a greater effect than quiet rest for two subscales. Both psychological well-being (SEES) and vigor (POMS) were improved following exercise, with no change in these variables following quiet rest. Of the nine constructs assessed in this experiment, these are the only subscales used to indicate positively valenced states. All other subscales are negatively valenced and revealed no difference between conditions. The pattern of effects following exercise was not surprising. It has long been recognized that exercise is sufficient to improve both positive and negative states (27), with a meta-analysis of older adults finding nearly identical effects sizes for exercise on positive and negative affect (5). The different pattern of effects for exercise and control conditions also mirrors the results found in healthy participants (19,25). For example, one study indicated that exercise and quiet rest resulted in similar changes in depression, but only the exercise conditions were followed with increased vigor (19). Although replication is required, it appears that, for both patients with MDD and healthy populations, exercise might have an effect on positively valenced states that is unique from the effect of quiet rest. Although the increase in positively valenced states was short lived, returning to baseline within 60 min of recovery, the effect was sizable, ranging from an effect size of $d = 0.73$ to 1.13. In fact, the exercise participants reported an increase in vigor to within 1/2 SD ($d = −0.47$) of published norms (28).

Although this would not be expected to have an impact on the underlying mental disorder, a single bout of exercise does appear to be a useful method for patients with MDD to regulate their mood in the short term, with a particular effect on positive moods. Given the debilitating symptoms of depression, a re- spite such as this is potentially invaluable to those who suffer with MDD. This is especially true because the time course of pharmacologic treatments require at least 2–4 wk and can exceed 6–8 wk before providing significant relief of depression (29). Other acute interventions exist (e.g., sleep deprivation), which have been shown to provide a greater benefit than was demonstrated in this study, but these other interventions also have only transient effects (18). Future research, therefore, should be designed to compare the effectiveness of acute interventions and to test potential mechanisms and any potentially adverse effects for these protocols. Such designs will provide the clearest direction to clinicians and patients in their search for a positive means to regulate mood disturbances associated with depression.

It may be that these effects were impacted by limitations in the survey instruments (e.g., the wording, variability of baseline scores, and instruments used). Although it can be argued that the item “active” within the vigor subscale artificially influenced postexercise responses (32), a second-
ary analysis deleted this item with no change in the pattern of effects. In addition, the low variability in baseline scores for the well-being subscale might have had an impact on the statistical significance for the change reported by the exercise group. The pre-post change score standard deviations, however, were relatively homogeneous (4.07 and 4.81) for the exercise and control conditions, respectively. Finally, exercise was shown to reduce fatigue for the POMS subscale, with no change in fatigue for the SEES subscale. Although higher intensity exercise has been shown to increase fatigue (11), the reduction for the POMS subscale was consistent with another study of moderate-intensity aerobic exercise (19). The failure to find an effect for the fatigue subscale of the SEES, therefore, was surprising. There does not appear, however, to be a consistent finding for this subscale in conjunction with aerobic exercise. Various investigators have found no change in fatigue (22), an increase in fatigue (34), and a reduction in fatigue (10), all of which may be owing to the use of an exercise-specific scale, which has been criticized for providing inaccurate baseline scores (14).

Additional reasons exits to interpret and apply these findings with caution because the results may not generalize to the clinical population for several reasons. For instance, we only included patients diagnosed with clinical depression without comorbid diagnoses. Individuals with comorbid diagnoses have additional concerns and may respond differently to this method of treatment. Additionally, this study is limited by the failure to assess levels of ongoing clinical depression, which prevented a test of this as a possible moderating factor. It should be noted, however, that the average baseline score for the depression subscale of the POMS was 11.00 for the exercise condition and 9.95 for the quiet rest condition. Although this used the “at this moment” instructions, they are significantly greater (d = 1.98 and 1.52, respectively) than the adult norms for the short form of the POMS using the “how you have been feeling, during the past week, including today” instructions (28). Thus, although we are unable to examine the level of clinical depression as a possible moderating factor, it does appear that these participants were experiencing a high degree of depressive symptoms at the pretest.

Despite these limitations, this remains the first experiment to examine the impact of a single bout of exercise on the postexercise mood states of clinically depressed patients. The positive results are encouraging and suggest that future research be conducted to determine the limits of acute exercise to provide this short-term benefit.

REFERENCES

